- In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
- Show that
$$\frac { 1 } { \cos \theta } + \tan \theta \equiv \frac { \cos \theta } { 1 - \sin \theta } \quad \theta \neq ( 2 n + 1 ) 90 ^ { \circ } \quad n \in \mathbb { Z }$$
Given that \(\cos 2 x \neq 0\)
- solve for \(0 < x < 90 ^ { \circ }\)
$$\frac { 1 } { \cos 2 x } + \tan 2 x = 3 \cos 2 x$$
giving your answers to one decimal place.