OCR H240/01 2020 November — Question 10 4 marks

Exam BoardOCR
ModuleH240/01 (Pure Mathematics)
Year2020
SessionNovember
Marks4
TopicIntegration by Substitution

10
\includegraphics[max width=\textwidth, alt={}, center]{febe231d-200a-4957-b41b-de5b9be98b0a-7_352_545_258_239} The diagram shows the curve \(y = \sin \left( \frac { 1 } { 2 } \sqrt { x - 1 } \right)\), for \(1 \leqslant x \leqslant 2\).
  1. Use rectangles of width 0.25 to find upper and lower bounds for \(\int _ { 1 } ^ { 2 } \sin \left( \frac { 1 } { 2 } \sqrt { x - 1 } \right) \mathrm { d } x\). Give your answers correct to 3 significant figures.
    1. Use the substitution \(t = \sqrt { x - 1 }\) to show that \(\int \sin \left( \frac { 1 } { 2 } \sqrt { x - 1 } \right) \mathrm { d } x = \int 2 t \sin \left( \frac { 1 } { 2 } t \right) \mathrm { d } t\).
    2. Hence show that \(\int _ { 1 } ^ { 2 } \sin \left( \frac { 1 } { 2 } \sqrt { x - 1 } \right) \mathrm { d } x = 8 \sin \frac { 1 } { 2 } - 4 \cos \frac { 1 } { 2 }\).