\(\mathbf { 4 }\) & 10 & 5 & 7 & 10
\hline
\end{tabular}
\end{center}
\end{table}
\begin{table}[h]
\captionsetup{labelformat=empty}
\caption{final route matrix}
| \cline { 2 - 5 }
\multicolumn{1}{c|}{} | \(\mathbf { 1 }\) | \(\mathbf { 2 }\) | \(\mathbf { 3 }\) | \(\mathbf { 4 }\) |
| \(\mathbf { 1 }\) | 3 | 3 | 3 | 3 |
| \(\mathbf { 2 }\) | 3 | 3 | 3 | 4 |
| \(\mathbf { 3 }\) | 1 | 2 | 2 | 2 |
| \(\mathbf { 4 }\) | 2 | 2 | 2 | 2 |
\end{table}
- Draw the complete network of shortest times.
- Explain how to use the final route matrix to find the quickest route from node \(\mathbf { 4 }\) to node \(\mathbf { 1 }\) in the original incomplete network. Give this quickest route.
A new node, node 5, is added to the original incomplete network. The new journey times are shown in the table.
\begin{center}
\begin{tabular}{ | l | c | c | c | c | }
\cline { 2 - 5 }
\multicolumn{1}{c|}{} & \(\mathbf { 1 }\) & \(\mathbf { 2 }\) & \(\mathbf { 3 }\) & \(\mathbf { 4 }\)
\hline