OCR MEI D2 2006 June — Question 4

Exam BoardOCR MEI
ModuleD2 (Decision Mathematics 2)
Year2006
SessionJune
TopicSign Change & Interval Methods
TypeLinear Programming Formulation

4 The "Cuddly Friends Company" produces soft toys. For one day's production run it has available \(11 \mathrm {~m} ^ { 2 }\) of furry material, \(24 \mathrm {~m} ^ { 2 }\) of woolly material and 30 glass eyes. It has three soft toys which it can produce: The "Cuddly Aardvark", each of which requires \(0.5 \mathrm {~m} ^ { 2 }\) of furry material, \(2 \mathrm {~m} ^ { 2 }\) of woolly material and two eyes. Each sells at a profit of \(\pounds 3\). The "Cuddly Bear", each of which requires \(1 \mathrm {~m} ^ { 2 }\) of furry material, \(1.5 \mathrm {~m} ^ { 2 }\) of woolly material and two eyes. Each sells at a profit of \(\pounds 5\). The "Cuddly Cat", each of which requires \(1 \mathrm {~m} ^ { 2 }\) of furry material, \(1 \mathrm {~m} ^ { 2 }\) of woolly material and two eyes. Each sells at a profit of \(\pounds 2\). An analyst formulates the following LP to find the production plan which maximises profit. $$\begin{array} { l l } \text { Maximise } & 3 a + 5 b + 2 c
\text { subject to } & 0.5 a + b + c \leqslant 11 ,
& 2 a + 1.5 b + c \leqslant 24 ,
& 2 a + 2 b + 2 c \leqslant 30 . \end{array}$$
  1. Explain how this formulation models the problem, and say why the analyst has not simplified the last inequality to \(a + b + c \leqslant 15\).
  2. The final constraint is different from the others in that the resource is integer valued. Explain why that does not impose an additional difficulty for this problem.
  3. Solve this problem using the simplex algorithm. Interpret your solution and say what resources are left over. On a particular day an order is received for two Cuddly Cats, and the extra constraint \(c \geqslant 2\) is added to the formulation.
  4. Set up an initial simplex tableau to deal with the modified problem using either the big-M approach or two-phase simplex. Do not perform any iterations on your tableau.
  5. Show that the solution given by \(a = 8 , b = 2\) and \(c = 5\) uses all of the resources, but that \(a = 6 , b = 6\) and \(c = 2\) gives more profit. What resources are left over from the latter solution?