OCR D2 2009 June — Question 2

Exam BoardOCR
ModuleD2 (Decision Mathematics 2)
Year2009
SessionJune
TopicCurve Sketching
TypeOptimization and assignment problems

2
  1. Set up a dynamic programming tabulation to find the maximum weight route from ( \(0 ; 0\) ) to ( \(3 ; 0\) ) on the following directed network.
    \includegraphics[max width=\textwidth, alt={}, center]{9057da95-c53a-416c-8340-c94aff366385-3_595_1056_404_587} Give the route and its total weight.
  2. The actions now represent the activities in a project and the weights represent their durations. This information is shown in the table below.
    ActivityDurationImmediate predecessors
    \(A\)8-
    \(B\)9-
    C7-
    D5\(A\)
    E6\(A\)
    \(F\)4\(B\)
    \(G\)5B
    \(H\)6\(B\)
    \(I\)10C
    \(J\)9\(C\)
    \(K\)6\(C\)
    \(L\)7D, F, I
    \(M\)6\(E , G , J\)
    \(N\)8\(H\), \(K\)
    Make a large copy of the network with the activities \(A\) to \(N\) labelled appropriately. Carry out a forward pass to find the early event times and a backward pass to find the late event times. Find the minimum completion time for the project and list the critical activities.
  3. Compare the solutions to parts (i) and (ii).