Edexcel D2 2006 January — Question 6

Exam BoardEdexcel
ModuleD2 (Decision Mathematics 2)
Year2006
SessionJanuary
TopicFixed Point Iteration

6. The network in the figure above, shows the distances in km , along the roads between eight towns, A, B, C, D, E, F, G and H. Keith has a shop in each town and needs to visit each one. He wishes to travel a minimum distance and his route should start and finish at A . By deleting D, a lower bound for the length of the route was found to be 586 km .
By deleting F, a lower bound for the length of the route was found to be 590 km .
  1. By deleting C, find another lower bound for the length of the route. State which is the best lower bound of the three, giving a reason for your answer.
  2. By inspection complete the table of least distances. \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{(8)
    (8)
    (Total 13 marks)} \includegraphics[alt={},max width=\textwidth]{a5d69a77-c196-483c-a550-1a55363555af-3_780_889_1069_1078}
    \end{figure} (4) The table can now be taken to represent a complete network. The nearest neighbour algorithm was used to obtain upper bounds for the length of the route: Starting at D, an upper bound for the length of the route was found to be 838 km .
    Starting at F, an upper bound for the length of the route was found to be 707 km .
  3. Starting at C , use the nearest neighbour algorithm to obtain another upper bound for the length of the route. State which is the best upper bound of the
    ABCDEFGH
    A-848513817314952
    B84-13077126213222136
    C85130-53888392
    D1387753-49190
    E1731268849-100180215
    F21383100-163115
    G14922292180163-97
    H5213619021511597-
    three, giving a reason for your answer.
    (4) (Total 13 marks)