4 The diagram represents a very simple maze with two vertices, A and B. At each vertex a rat either exits the maze or runs to the other vertex, each with probability 0.5 . The rat starts at vertex A .
\includegraphics[max width=\textwidth, alt={}, center]{dab87ac5-eda4-433f-b07a-0a609aca2f65-4_79_930_534_571}
- Describe how to use 1-digit random numbers to simulate this situation.
- Use the random digits provided in your answer book to run 10 simulations, each starting at vertex A. Hence estimate the probability of the rat exiting at each vertex, and calculate the mean number of times it runs between vertices before exiting.
The second diagram represents a maze with three vertices, A, B and C. At each vertex there are three possibilities, and the rat chooses one, each with probability \(1 / 3\). The rat starts at vertex A.
\includegraphics[max width=\textwidth, alt={}, center]{dab87ac5-eda4-433f-b07a-0a609aca2f65-4_566_889_1082_589} - Describe how to use 1-digit random numbers to simulate this situation.
- Use the random digits provided in your answer book to run 10 simulations, each starting at vertex A. Hence estimate the probability of the rat exiting at each vertex.