OCR MEI D1 2008 June — Question 3

Exam BoardOCR MEI
ModuleD1 (Decision Mathematics 1)
Year2008
SessionJune
TopicPermutations & Arrangements
TypeAssignment/allocation matching problems

3 The graph represents four towns together with (two-way) roads connecting them.
\includegraphics[max width=\textwidth, alt={}, center]{8eba759f-38bc-4d14-ac65-9a0ee6c79741-4_191_286_319_886} A path is a set of connected arcs linking one vertex to another. A path contains no repeated vertex. \(\mathrm { T } _ { 1 } \rightarrow \mathrm {~T} _ { 2 }\) and \(\mathrm { T } _ { 1 } \rightarrow \mathrm {~T} _ { 3 } \rightarrow \mathrm {~T} _ { 2 }\) are paths.
  1. There are six paths from \(\mathrm { T } _ { 1 }\). List them.
  2. List the paths from \(\mathrm { T } _ { 4 }\).
  3. How many paths are there altogether? For this question a route is defined to be a path in which the direction of the arcs is not relevant. Thus \(\mathrm { T } _ { 1 } \rightarrow \mathrm {~T} _ { 2 }\) and \(\mathrm { T } _ { 2 } \rightarrow \mathrm {~T} _ { 1 }\) are the same route. Similarly \(\mathrm { T } _ { 1 } \rightarrow \mathrm {~T} _ { 3 } \rightarrow \mathrm {~T} _ { 2 }\) and \(\mathrm { T } _ { 2 } \rightarrow \mathrm {~T} _ { 3 } \rightarrow \mathrm {~T} _ { 1 }\) are the same route (but note that \(\mathrm { T } _ { 1 } \rightarrow \mathrm {~T} _ { 2 } \rightarrow \mathrm {~T} _ { 3 }\) is different).
  4. How many routes are there altogether?