3 The graph represents four towns together with (two-way) roads connecting them.
\includegraphics[max width=\textwidth, alt={}, center]{8eba759f-38bc-4d14-ac65-9a0ee6c79741-4_191_286_319_886}
A path is a set of connected arcs linking one vertex to another. A path contains no repeated vertex. \(\mathrm { T } _ { 1 } \rightarrow \mathrm {~T} _ { 2 }\) and \(\mathrm { T } _ { 1 } \rightarrow \mathrm {~T} _ { 3 } \rightarrow \mathrm {~T} _ { 2 }\) are paths.
- There are six paths from \(\mathrm { T } _ { 1 }\). List them.
- List the paths from \(\mathrm { T } _ { 4 }\).
- How many paths are there altogether?
For this question a route is defined to be a path in which the direction of the arcs is not relevant. Thus \(\mathrm { T } _ { 1 } \rightarrow \mathrm {~T} _ { 2 }\) and \(\mathrm { T } _ { 2 } \rightarrow \mathrm {~T} _ { 1 }\) are the same route. Similarly \(\mathrm { T } _ { 1 } \rightarrow \mathrm {~T} _ { 3 } \rightarrow \mathrm {~T} _ { 2 }\) and \(\mathrm { T } _ { 2 } \rightarrow \mathrm {~T} _ { 3 } \rightarrow \mathrm {~T} _ { 1 }\) are the same route (but note that \(\mathrm { T } _ { 1 } \rightarrow \mathrm {~T} _ { 2 } \rightarrow \mathrm {~T} _ { 3 }\) is different).
- How many routes are there altogether?