Express \(24 \sin \theta - 7 \cos \theta\) in the form \(R \sin ( \theta - \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\). Give the value of \(\alpha\) correct to 2 decimal places.
Hence find the smallest positive value of \(\theta\) satisfying the equation
$$24 \sin \theta - 7 \cos \theta = 17$$