AQA D1 2013 June — Question 5

Exam BoardAQA
ModuleD1 (Decision Mathematics 1)
Year2013
SessionJune
TopicVectors Introduction & 2D

5 The network on the page opposite shows the times, in minutes, taken by police cars to drive along roads connecting 12 places, \(A , B , \ldots , L\). On a particular day, there are three police cars in the area at \(A , E\) and \(J\). There is an emergency at \(G\) and all three police cars drive to \(G\).
    1. Use Dijkstra's algorithm on the network, starting from \(\boldsymbol { G }\), to find the minimum driving time for each of the police cars to arrive at \(G\).
    2. For each of the police cars, write down the route corresponding to the minimum driving time in your answer to part (a)(i).
  1. Each day, a police car has to drive along each road at least once, starting and finishing at \(A\). For an optimal Chinese postman route:
    1. find the driving time for the police car;
    2. state the number of times that the vertex \(B\) would appear.
      \includegraphics[max width=\textwidth, alt={}]{77c4efd4-a905-48f3-a6f7-36b0e47dbc6d-13_2486_1709_221_153}