AQA D1 2012 June — Question 9

Exam BoardAQA
ModuleD1 (Decision Mathematics 1)
Year2012
SessionJune
TopicCombinations & Selection

9 Ollyin is buying new pillows for his hotel. He buys three types of pillow: soft, medium and firm. He must buy at least 100 soft pillows and at least 200 medium pillows.
He must buy at least 400 pillows in total.
Soft pillows cost \(\pounds 4\) each. Medium pillows cost \(\pounds 3\) each. Firm pillows cost \(\pounds 4\) each.
He wishes to spend no more than \(\pounds 1800\) on new pillows.
At least \(40 \%\) of the new pillows must be medium pillows.
Ollyin buys \(x\) soft pillows, \(y\) medium pillows and \(z\) firm pillows.
  1. In addition to \(x \geqslant 0 , y \geqslant 0\) and \(z \geqslant 0\), find five inequalities in \(x , y\) and \(z\) that model the above constraints.
  2. Ollyin decides to buy twice as many soft pillows as firm pillows.
    1. Show that three of your answers in part (a) become $$\begin{aligned} 3 x + 2 y & \geqslant 800
      2 x + y & \leqslant 600
      y & \geqslant x \end{aligned}$$
    2. On the grid opposite, draw a suitable diagram to represent Ollyin's situation, indicating the feasible region.
    3. Use your diagram to find the maximum total number of pillows that Ollyin can buy.
    4. Find the number of each type of pillow that Ollyin can buy that corresponds to your answer to part (b)(iii).
      \includegraphics[max width=\textwidth, alt={}]{1258a6d3-558a-46dc-a916-d71f71b175ff-20_2256_1707_221_153}