10 A curve has equation \(y = \frac { 1 } { k } x ^ { \frac { 1 } { 2 } } + x ^ { - \frac { 1 } { 2 } } + \frac { 1 } { k ^ { 2 } }\) where \(x > 0\) and \(k\) is a positive constant.
- It is given that when \(x = \frac { 1 } { 4 }\), the gradient of the curve is 3 .
Find the value of \(k\).
- It is given instead that \(\int _ { \frac { 1 } { 4 } k ^ { 2 } } ^ { k ^ { 2 } } \left( \frac { 1 } { k } x ^ { \frac { 1 } { 2 } } + x ^ { - \frac { 1 } { 2 } } + \frac { 1 } { k ^ { 2 } } \right) \mathrm { d } x = \frac { 13 } { 12 }\).
Find the value of \(k\).