AQA D1 2011 June — Question 3

Exam BoardAQA
ModuleD1 (Decision Mathematics 1)
Year2011
SessionJune
TopicCombinations & Selection

3 A group of eight friends, \(A , B , C , D , E , F , G\) and \(H\), keep in touch by sending text messages. The cost, in pence, of sending a message between each pair of friends is shown in the following table.
\(\boldsymbol { A }\)\(\boldsymbol { B }\)\(\boldsymbol { C }\)\(\boldsymbol { D }\)\(\boldsymbol { E }\)\(\boldsymbol { F }\)\(\boldsymbol { G }\)\(\boldsymbol { H }\)
\(\boldsymbol { A }\)-15101216111417
\(\boldsymbol { B }\)15-151415161615
\(\boldsymbol { C }\)1015-111012149
\(\boldsymbol { D }\)121411-11121412
\(\boldsymbol { E }\)16151011-131514
\(\boldsymbol { F }\)1116121213-148
G141614141514-13
\(\boldsymbol { H }\)171591214813-
One of the group wishes to pass on a piece of news to all the other friends, either by a direct text or by the message being passed on from friend to friend, at the minimum total cost.
    1. Use Prim's algorithm starting from \(A\), showing the order in which you select the edges, to find a minimum spanning tree for the table.
    2. Draw your minimum spanning tree.
    3. Find the minimum total cost.
  1. Person \(H\) leaves the group. Find the new minimum total cost.