AQA D1 2012 January — Question 5

Exam BoardAQA
ModuleD1 (Decision Mathematics 1)
Year2012
SessionJanuary
TopicInequalities

5 The feasible region of a linear programming problem is determined by the following: $$\begin{aligned} y & \geqslant 20
x + y & \geqslant 25
5 x + 2 y & \leqslant 100
y & \leqslant 4 x
y & \geqslant 2 x \end{aligned}$$
  1. On Figure 1 opposite, draw a suitable diagram to represent the inequalities and indicate the feasible region.
  2. Use your diagram to find the minimum value of \(P\), on the feasible region, in the case where:
    1. \(P = x + 2 y\);
    2. \(P = - x + y\). In each case, state the corresponding values of \(x\) and \(y\).