AQA D1 2005 January — Question 8

Exam BoardAQA
ModuleD1 (Decision Mathematics 1)
Year2005
SessionJanuary
TopicCombinations & Selection

8 [Figure 2, printed on a separate sheet, is provided for use in this question.]
A bakery makes two types of pizza, large and medium.
Every day the bakery must make at least 40 of each type.
Every day the bakery must make at least 120 in total but not more than 400 pizzas in total.
Each large pizza takes 4 minutes to make, and each medium pizza takes 2 minutes to make. There are four workers available, each for five hours a day, to make the pizzas. The bakery makes a profit of \(\pounds 3\) on each large pizza sold and \(\pounds 1\) on each medium pizza sold.
Each day, the bakery makes and sells \(x\) large pizzas and \(y\) medium pizzas.
The bakery wishes to maximise its profit, \(\pounds P\).
  1. Show that one of the constraints leads to the inequality $$2 x + y \leqslant 600$$
  2. Formulate this situation as a linear programming problem.
  3. On Figure 2, draw a suitable diagram to enable the problem to be solved graphically, indicating the feasible region and an objective line.
  4. Use your diagram to find the maximum daily profit.
  5. The bakery introduces a new pricing structure in which the profit is \(\pounds 2\) on each large pizza sold and \(\pounds 2\) on each medium pizza sold.
    1. Find the new maximum daily profit for the bakery.
    2. Write down the number of different combinations that would give the new maximum daily profit.