OCR M2 2011 January — Question 2

Exam BoardOCR
ModuleM2 (Mechanics 2)
Year2011
SessionJanuary
TopicVariable Force

2 The resistance to the motion of a car is \(k v ^ { \frac { 3 } { 2 } } \mathrm {~N}\), where \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) is the car's speed and \(k\) is a constant. The power exerted by the car's engine is 15000 W , and the car has constant speed \(25 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) along a horizontal road.
  1. Show that \(k = 4.8\). With the engine operating at a much lower power, the car descends a hill of inclination \(\alpha\), where \(\sin \alpha = \frac { 1 } { 15 }\). At an instant when the speed of the car is \(16 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), its acceleration is \(0.3 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  2. Given that the mass of the car is 700 kg , calculate the power of the engine.
    \includegraphics[max width=\textwidth, alt={}, center]{941c0c81-a74f-49c0-acb7-1c23266fc2c8-02_579_447_1658_849} A particle \(P\) of mass 0.4 kg is attached to one end of each of two light inextensible strings which are both taut. The other end of the longer string is attached to a fixed point \(A\), and the other end of the shorter string is attached to a fixed point \(B\), which is vertically below \(A\). The string \(A P\) makes an angle of \(30 ^ { \circ }\) with the vertical and is 0.5 m long. The string \(B P\) makes an angle of \(60 ^ { \circ }\) with the vertical. \(P\) moves with constant angular speed in a horizontal circle with centre vertically below \(B\) (see diagram). The tension in the string \(A P\) is twice the tension in the string \(B P\). Calculate