OCR M2 2007 January — Question 6

Exam BoardOCR
ModuleM2 (Mechanics 2)
Year2007
SessionJanuary
TopicCentre of Mass 1

6
\includegraphics[max width=\textwidth, alt={}, center]{1fbb3693-0beb-47c8-800f-50041f105699-3_540_878_989_632} A uniform lamina \(A B C D E\) of weight 30 N consists of a rectangle and a right-angled triangle. The dimensions are as shown in the diagram.
  1. Taking \(x\) - and \(y\)-axes along \(A E\) and \(A B\) respectively, find the coordinates of the centre of mass of the lamina. The lamina is freely suspended from a hinge at \(B\).
  2. Calculate the angle that \(A B\) makes with the vertical. The lamina is now held in a position such that \(B D\) is horizontal. This is achieved by means of a string attached to \(D\) and to a fixed point 15 cm directly above the hinge at \(B\).
  3. Calculate the tension in the string.