OCR M1 2014 June — Question 7

Exam BoardOCR
ModuleM1 (Mechanics 1)
Year2014
SessionJune
TopicMotion on a slope

7
\includegraphics[max width=\textwidth, alt={}, center]{66eb8290-3a80-40bf-be40-a936ed7d5a1b-5_510_1091_269_479}
\(A\) and \(B\) are points at the upper and lower ends, respectively, of a line of greatest slope on a plane inclined at \(30 ^ { \circ }\) to the horizontal. \(M\) is the mid-point of \(A B\). Two particles \(P\) and \(Q\), joined by a taut light inextensible string, are placed on the plane at \(A\) and \(M\) respectively. The particles are simultaneously projected with speed \(0.6 \mathrm {~ms} ^ { - 1 }\) down the line of greatest slope (see diagram). The particles move down the plane with acceleration \(0.9 \mathrm {~ms} ^ { - 2 }\). At the instant 2 s after projection, \(P\) is at \(M\) and \(Q\) is at \(B\). The particle \(Q\) subsequently remains at rest at \(B\).
  1. Find the distance \(A B\). The plane is rough between \(A\) and \(M\), but smooth between \(M\) and \(B\).
  2. Calculate the speed of \(P\) when it reaches \(B\).
    \(P\) has mass 0.4 kg and \(Q\) has mass 0.3 kg .
  3. By considering the motion of \(Q\), calculate the tension in the string while both particles are moving down the plane.
  4. Calculate the coefficient of friction between \(P\) and the plane between \(A\) and \(M\). \section*{END OF QUESTION PAPER}