OCR MEI S1 2016 June — Question 7

Exam BoardOCR MEI
ModuleS1 (Statistics 1)
Year2016
SessionJune
TopicHypothesis test of binomial distributions
TypeExpected value and most likely value

7 To withdraw money from a cash machine, the user has to enter a 4-digit PIN (personal identification number). There are several thousand possible 4-digit PINs, but a survey found that \(10 \%\) of cash machine users use the PIN '1234'.
  1. 16 cash machine users are selected at random.
    (A) Find the probability that exactly 3 of them use 1234 as their PIN.
    (B) Find the probability that at least 3 of them use 1234 as their PIN.
    (C) Find the expected number of them who use 1234 as their PIN. An advertising campaign aims to reduce the number of people who use 1234 as their PIN. A hypothesis test is to be carried out to investigate whether the advertising campaign has been successful.
  2. Write down suitable null and alternative hypotheses for the test. Give a reason for your choice of alternative hypothesis.
  3. A random sample of 20 cash machine users is selected.
    (A) Explain why the test could not be carried out at the \(10 \%\) significance level.
    (B) The test is to be carried out at the \(k \%\) significance level. State the lowest integer value of \(k\) for which the test could result in the rejection of the null hypothesis.
  4. A new random sample of 60 cash machine users is selected. It is found that 2 of them use 1234 as their PIN. You are given that, if \(X \sim \mathrm {~B} ( 60,0.1 )\), then (to 4 decimal places) $$\mathrm { P } ( X = 2 ) = 0.0393 , \quad \mathrm { P } ( X < 2 ) = 0.0138 , \quad \mathrm { P } ( X \leqslant 2 ) = 0.0530 .$$ Using the same hypotheses as in part (ii), carry out the test at the \(5 \%\) significance level. \section*{END OF QUESTION PAPER}