CAIE FP2 2016 November — Question 1

Exam BoardCAIE
ModuleFP2 (Further Pure Mathematics 2)
Year2016
SessionNovember
TopicSimple Harmonic Motion

1
\includegraphics[max width=\textwidth, alt={}, center]{62d0d8cb-8f8c-4298-9705-71a735a9a4e7-2_125_641_262_751} The point \(C\) is on the fixed line \(l\). Points \(A\) and \(B\) on \(l\) are such that \(A C = 4 \mathrm {~m}\) and \(C B = 2 \mathrm {~m}\), with \(C\) between \(A\) and \(B\). The point \(M\) is the mid-point of \(A B\) (see diagram). A particle \(P\) of mass \(m\) oscillates between \(A\) and \(B\) in simple harmonic motion. When \(P\) is at \(C\), its speed is \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Find
  1. the magnitude of the maximum acceleration of \(P\),
  2. the number of complete oscillations made by \(P\) in one minute,
  3. the time that \(P\) takes to travel directly from \(A\) to \(C\).