\includegraphics[max width=\textwidth, alt={}]{d3e9a568-a9ea-483e-8e65-90fdc4a69781-5_389_702_484_719}
Two identical uniform rough spheres \(A\) and \(B\), each of weight \(W\) and radius \(a\), are at rest on a rough horizontal plane, and are not in contact with each other. A third identical sphere \(C\) rests on \(A\) and \(B\) with its centre in the same vertical plane as the centres of \(A\) and \(B\). The line joining the centres of \(A\) and \(C\) and the line joining the centres of \(B\) and \(C\) are each inclined at an angle \(\theta\) to the vertical (see diagram). The coefficient of friction between each sphere and the plane is \(\mu\). The coefficient of friction between \(C\) and \(A\), and between \(C\) and \(B\), is \(\mu ^ { \prime }\). The system remains in equilibrium. Show that
$$\mu \geqslant \frac { \sin \theta } { 3 ( 1 + \cos \theta ) } \quad \text { and } \quad \mu ^ { \prime } \geqslant \frac { \sin \theta } { 1 + \cos \theta } .$$