CAIE FP2 2012 November — Question 7

Exam BoardCAIE
ModuleFP2 (Further Pure Mathematics 2)
Year2012
SessionNovember
TopicCumulative distribution functions
TypeCDF of transformed variable

7 The continuous random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} \frac { 2 } { 15 } x & 1 \leqslant x \leqslant 4
0 & \text { otherwise } \end{cases}$$ The random variable \(Y\) is defined by \(Y = X ^ { 3 }\). Show that the distribution function G of \(Y\) is given by $$\mathrm { G } ( y ) = \begin{cases} 0 & y < 1
\frac { 1 } { 15 } \left( y ^ { \frac { 2 } { 3 } } - 1 \right) & 1 \leqslant y \leqslant 64
1 & y > 64 \end{cases}$$ Find
  1. the median value of \(Y\),
  2. \(\mathrm { E } ( Y )\).