7 The continuous random variable \(X\) has probability density function f given by
$$f ( x ) = \begin{cases} \frac { 2 } { 15 } x & 1 \leqslant x \leqslant 4
0 & \text { otherwise } \end{cases}$$
The random variable \(Y\) is defined by \(Y = X ^ { 3 }\). Show that the distribution function G of \(Y\) is given by
$$\mathrm { G } ( y ) = \begin{cases} 0 & y < 1
\frac { 1 } { 15 } \left( y ^ { \frac { 2 } { 3 } } - 1 \right) & 1 \leqslant y \leqslant 64
1 & y > 64 \end{cases}$$
Find
- the median value of \(Y\),
- \(\mathrm { E } ( Y )\).