CAIE FP2 2016 June — Question 4

Exam BoardCAIE
ModuleFP2 (Further Pure Mathematics 2)
Year2016
SessionJune
TopicCircular Motion 2

4 A particle \(P\) is at rest at the lowest point on the smooth inner surface of a hollow sphere with centre \(O\) and radius \(a\). The particle is projected horizontally with speed \(u\) and begins to move in a vertical circle on the inner surface of the sphere. The particle loses contact with the sphere at the point \(A\), where \(O A\) makes an angle \(\theta\) with the upward vertical through \(O\). Given that the speed of \(P\) at \(A\) is \(\sqrt { } \left( \frac { 3 } { 5 } a g \right)\), find \(u\) in terms of \(a\) and \(g\). Find, in terms of \(a\), the greatest height above the level of \(O\) achieved by \(P\) in its subsequent motion. (You may assume that \(P\) achieves its greatest height before it makes any further contact with the sphere.)