| Exam Board | CAIE |
| Module | FP2 (Further Pure Mathematics 2) |
| Year | 2013 |
| Session | June |
| Topic | Chi-squared distribution |
A researcher is investigating the relationship between the political allegiance of university students and their childhood environment. He chooses a random sample of 100 students and finds that 60 have political allegiance to the Alliance party. He also classifies their childhood environment as rural or urban, and finds that 45 had a rural childhood. The researcher carries out a test, at the \(10 \%\) significance level, on this data and finds that political allegiance is independent of childhood environment. Given that \(A\) is the number of students in the sample who both support the Alliance party and have a rural childhood, find the greatest and least possible values of \(A\).
A second random sample of size \(100 N\), where \(N\) is an integer, is taken from the university student population. It is found that the proportions supporting the Alliance party from urban and rural childhoods are the same as in the first sample. Given that the value of \(A\) in the first sample was 29, find the greatest possible value of \(N\) that would lead to the same conclusion (that political allegiance is independent of childhood environment) from a test, at the \(10 \%\) significance level, on this second set of data.