| Exam Board | CAIE |
| Module | FP2 (Further Pure Mathematics 2) |
| Year | 2012 |
| Session | June |
| Topic | Cumulative distribution functions |
| Type | CDF of transformed variable |
9 The continuous random variable \(X\) has probability density function f given by
$$f ( x ) = \begin{cases} \frac { 1 } { 2 a } & - a \leqslant x \leqslant a
0 & \text { otherwise } \end{cases}$$
where \(a\) is a positive constant. Find the distribution function of \(X\).
The random variable \(Y\) is defined by \(Y = \mathrm { e } ^ { X }\). Find the distribution function of \(Y\).
Given that \(a = 4\), find the value of \(k\) for which \(\mathrm { P } ( Y \geqslant k ) = 0.25\).