CAIE FP2 2012 June — Question 9

Exam BoardCAIE
ModuleFP2 (Further Pure Mathematics 2)
Year2012
SessionJune
TopicCumulative distribution functions
TypeCDF of transformed variable

9 The continuous random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} \frac { 1 } { 2 a } & - a \leqslant x \leqslant a
0 & \text { otherwise } \end{cases}$$ where \(a\) is a positive constant. Find the distribution function of \(X\). The random variable \(Y\) is defined by \(Y = \mathrm { e } ^ { X }\). Find the distribution function of \(Y\). Given that \(a = 4\), find the value of \(k\) for which \(\mathrm { P } ( Y \geqslant k ) = 0.25\).