CAIE FP1 2013 November — Question 6

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2013
SessionNovember
TopicIntegration using inverse trig and hyperbolic functions

6 [In this question you may use, without proof, the formula \(\int \sec x \mathrm {~d} x = \ln ( \sec x + \tan x ) + \operatorname { const }\).]
  1. Let \(y = \sec x\). Find the mean value of \(y\) with respect to \(x\) over the interval \(\frac { 1 } { 6 } \pi \leqslant x \leqslant \frac { 1 } { 3 } \pi\).
  2. The curve \(C\) has equation \(y = - \ln ( \cos x )\), for \(0 \leqslant x \leqslant \frac { 1 } { 3 } \pi\). Find the arc length of \(C\).