CAIE P3 2018 June — Question 7 3 marks

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2018
SessionJune
Marks3
TopicReciprocal Trig & Identities

7
    1. Express \(\frac { \tan ^ { 2 } \theta - 1 } { \tan ^ { 2 } \theta + 1 }\) in the form \(a \sin ^ { 2 } \theta + b\), where \(a\) and \(b\) are constants to be found. [3]
    2. Hence, or otherwise, and showing all necessary working, solve the equation $$\frac { \tan ^ { 2 } \theta - 1 } { \tan ^ { 2 } \theta + 1 } = \frac { 1 } { 4 }$$ for \(- 90 ^ { \circ } \leqslant \theta \leqslant 0 ^ { \circ }\).

  1. \includegraphics[max width=\textwidth, alt={}, center]{6eada775-be31-4d0f-87b5-0e7e00b376f3-11_549_796_267_717} The diagram shows the graphs of \(y = \sin x\) and \(y = 2 \cos x\) for \(- \pi \leqslant x \leqslant \pi\). The graphs intersect at the points \(A\) and \(B\).
    1. Find the \(x\)-coordinate of \(A\).
    2. Find the \(y\)-coordinate of \(B\).