7 Fig. 7 shows part of the curve with equation \(y = \frac { x + 5 } { ( 2 x - 5 ) ( 3 x + 8 ) }\).
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8d91a83d-971e-48ca-aa1a-09f2c1a8093a-3_894_890_447_625}
\captionsetup{labelformat=empty}
\caption{Fig. 7}
\end{figure}
- Write down the coordinates of the two points where the curve crosses the axes.
- Write down the equations of the two vertical asymptotes and the one horizontal asymptote.
- Determine how the curve approaches the horizontal asymptote for large positive and large negative values of \(x\).
- On the copy of Fig. 7, sketch the rest of the curve.
- Solve the inequality \(\frac { x + 5 } { ( 2 x - 5 ) ( 3 x + 8 ) } < 0\).