10 The points \(A\) and \(B\) have position vectors given by \(\overrightarrow { O A } = \mathbf { i } - 2 \mathbf { j } + 2 \mathbf { k }\) and \(\overrightarrow { O B } = 3 \mathbf { i } + \mathbf { j } + \mathbf { k }\). The line \(l\) has equation \(\mathbf { r } = 2 \mathbf { i } + \mathbf { j } + m \mathbf { k } + \mu ( \mathbf { i } - 2 \mathbf { j } - 4 \mathbf { k } )\), where \(m\) is a constant.
- Given that the line \(l\) intersects the line passing through \(A\) and \(B\), find the value of \(m\).
- Find the equation of the plane which is parallel to \(\mathbf { i } - 2 \mathbf { j } - 4 \mathbf { k }\) and contains the points \(A\) and \(B\). Give your answer in the form \(a x + b y + c z = d\).