A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Stats And Pure
Complex Numbers Argand & Loci
Q6
OCR FP1 2010 June — Question 6
Exam Board
OCR
Module
FP1 (Further Pure Mathematics 1)
Year
2010
Session
June
Topic
Complex Numbers Argand & Loci
6
Sketch on a single Argand diagram the loci given by
(a) \(| z - 3 + 4 \mathrm { i } | = 5\),
(b) \(| z | = | z - 6 |\).
Indicate, by shading, the region of the Argand diagram for which $$| z - 3 + 4 i | \leqslant 5 \quad \text { and } \quad | z | \geqslant | z - 6 | .$$
This paper
(9 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q9
Q10