A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Stats And Pure
Partial Fractions
Q8
OCR FP1 2013 January — Question 8
Exam Board
OCR
Module
FP1 (Further Pure Mathematics 1)
Year
2013
Session
January
Topic
Partial Fractions
Type
Three linear factors in denominator
8
Show that \(\frac { 1 } { r } - \frac { 3 } { r + 1 } + \frac { 2 } { r + 2 } \equiv \frac { 2 - r } { r ( r + 1 ) ( r + 2 ) }\).
Hence show that \(\sum _ { r = 1 } ^ { n } \frac { 2 - r } { r ( r + 1 ) ( r + 2 ) } = \frac { n } { ( n + 1 ) ( n + 2 ) }\).
Find the value of \(\sum _ { r = 2 } ^ { \infty } \frac { 2 - r } { r ( r + 1 ) ( r + 2 ) }\).
This paper
(9 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q7
Q8
Q9
Q10