A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Sequences and series, recurrence and convergence
Q7
OCR FP1 2010 January — Question 7
Exam Board
OCR
Module
FP1 (Further Pure Mathematics 1)
Year
2010
Session
January
Topic
Sequences and series, recurrence and convergence
7
Show that \(\frac { 1 } { r ^ { 2 } } - \frac { 1 } { ( r + 1 ) ^ { 2 } } \equiv \frac { 2 r + 1 } { r ^ { 2 } ( r + 1 ) ^ { 2 } }\).
Hence find an expression, in terms of \(n\), for \(\sum _ { r = 1 } ^ { n } \frac { 2 r + 1 } { r ^ { 2 } ( r + 1 ) ^ { 2 } }\).
Find \(\sum _ { r = 2 } ^ { \infty } \frac { 2 r + 1 } { r ^ { 2 } ( r + 1 ) ^ { 2 } }\).
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10