OCR FP1 2009 January — Question 9

Exam BoardOCR
ModuleFP1 (Further Pure Mathematics 1)
Year2009
SessionJanuary
TopicSequences and series, recurrence and convergence

9
  1. Show that \(\frac { 1 } { 2 r - 3 } - \frac { 1 } { 2 r + 1 } = \frac { 4 } { 4 r ^ { 2 } - 4 r - 3 }\).
  2. Hence find an expression, in terms of \(n\), for $$\sum _ { r = 2 } ^ { n } \frac { 4 } { 4 r ^ { 2 } - 4 r - 3 }$$
  3. Show that \(\sum _ { r = 2 } ^ { \infty } \frac { 4 } { 4 r ^ { 2 } - 4 r - 3 } = \frac { 4 } { 3 }\).
  4. Use an algebraic method to find the square roots of the complex number \(2 + \mathrm { i } \sqrt { 5 }\). Give your answers in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are exact real numbers.
  5. Hence find, in the form \(x + \mathrm { i } y\) where \(x\) and \(y\) are exact real numbers, the roots of the equation $$z ^ { 4 } - 4 z ^ { 2 } + 9 = 0$$
  6. Show, on an Argand diagram, the roots of the equation in part (ii).
  7. Given that \(\alpha\) is the root of the equation in part (ii) such that \(0 < \arg \alpha < \frac { 1 } { 2 } \pi\), sketch on the same Argand diagram the locus given by \(| z - \alpha | = | z |\).