OCR MEI M1 2013 June — Question 8

Exam BoardOCR MEI
ModuleM1 (Mechanics 1)
Year2013
SessionJune
TopicSUVAT & Travel Graphs

8 Fig. 8.1 shows a sledge of mass 40 kg . It is being pulled across a horizontal surface of deep snow by a light horizontal rope. There is a constant resistance to its motion. The tension in the rope is 120 N . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{83e69140-4abf-4713-85da-922ce7530e47-6_122_849_456_609} \captionsetup{labelformat=empty} \caption{Fig. 8.1}
\end{figure} The sledge is initially at rest. After 10 seconds its speed is \(5 \mathrm {~ms} ^ { - 1 }\).
  1. Show that the resistance to motion is 100 N . When the speed of the sledge is \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), the rope breaks. The resistance to motion remains 100 N .
  2. Find the speed of the sledge
    (A) 1.6 seconds after the rope breaks,
    (B) 6 seconds after the rope breaks. The sledge is then pushed to the bottom of a ski slope. This is a plane at an angle of \(15 ^ { \circ }\) to the horizontal. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{83e69140-4abf-4713-85da-922ce7530e47-6_259_853_1457_607} \captionsetup{labelformat=empty} \caption{Fig. 8.2}
    \end{figure} The sledge is attached by a light rope to a winch at the top of the slope. The rope is parallel to the slope and has a constant tension of 200 N . Fig. 8.2 shows the situation when the sledge is part of the way up the slope. The ski slope is smooth.
  3. Show that when the sledge has moved from being at rest at the bottom of the slope to the point when its speed is \(8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), it has travelled a distance of 13.0 m (to 3 significant figures). When the speed of the sledge is \(8 \mathrm {~ms} ^ { - 1 }\), this rope also breaks.
  4. Find the time between the rope breaking and the sledge reaching the bottom of the slope.