The random variable \(Z\) has the standard Normal distribution with probability density function
$$\mathrm { f } ( z ) = \frac { 1 } { \sqrt { 2 \pi } } \mathrm { e } ^ { - z ^ { 2 } / 2 } , \quad - \infty < z < \infty$$
Obtain the moment generating function of \(Z\).
Let \(\mathrm { M } _ { Y } ( t )\) denote the moment generating function of the random variable \(Y\). Show that the moment generating function of the random variable \(a Y + b\), where \(a\) and \(b\) are constants, is \(\mathrm { e } ^ { b t } \mathrm { M } _ { Y } ( a t )\).
Use the results in parts (i) and (ii) to obtain the moment generating function \(\mathrm { M } _ { X } ( t )\) of the random variable \(X\) having the Normal distribution with parameters \(\mu\) and \(\sigma ^ { 2 }\).
If \(W = \mathrm { e } ^ { X }\) where \(X\) is as in part (iii), \(W\) is said to have a lognormal distribution. Show that, for any positive integer \(k\), the expected value of \(W ^ { k }\) is \(\mathrm { M } _ { X } ( k )\). Use this result to find the expected value and variance of the lognormal distribution.