3 Events \(A\) and \(B\) are such that \(\mathrm { P } ( A ) = 0.6 , \mathrm { P } ( B ) = 0.4\) and \(\mathrm { P } ( A \cup B ) = 0.8\).
- Find \(\mathrm { P } ( A \cap B )\).
- Find \(\mathrm { P } \left( A \cap B ^ { \prime } \right)\).
- Find \(\mathrm { P } ( A \mid B )\).
Events \(A\) and \(B\) are as above and a third event \(C\) is such that \(\mathrm { P } ( A \cup B \cup C ) = 1 , \mathrm { P } ( A \cap B \cap C ) = 0.05\), \(\mathrm { P } ( A \cap C ) = \mathrm { P } ( B \cap C )\) and \(\mathrm { P } \left( A \cap B ^ { \prime } \cap C ^ { \prime } \right) = 3 \mathrm { P } \left( A ^ { \prime } \cap B \cap C ^ { \prime } \right)\).
- Find \(\mathrm { P } ( C )\).