OCR MEI S3 2012 January — Question 4

Exam BoardOCR MEI
ModuleS3 (Statistics 3)
Year2012
SessionJanuary
TopicGeometric Probability
TypeDeriving CDF from area proportionality

4 At the school summer fair, one of the games involves throwing darts at a circular dartboard of radius \(a\) lying on the ground some distance away. Only darts that land on the board are counted. The distance from the centre of the board to the point where a dart lands is modelled by the random variable \(R\). It is assumed that the probability that a dart lands inside a circle of radius \(r\) is proportional to the area of the circle.
  1. By considering \(\mathrm { P } ( R < r )\) show that \(\mathrm { F } ( r )\), the cumulative distribution function of \(R\), is given by $$\mathrm { F } ( r ) = \begin{cases} 0 & r < 0 ,
    \frac { r ^ { 2 } } { a ^ { 2 } } & 0 \leqslant r \leqslant a ,
    1 & r > a . \end{cases}$$
  2. Find \(\mathrm { f } ( r )\), the probability density function of \(R\).
  3. Find \(\mathrm { E } ( R )\) and show that \(\operatorname { Var } ( R ) = \frac { a ^ { 2 } } { 18 }\). The radius \(a\) of the dartboard is 22.5 cm .
  4. Let \(\bar { R }\) denote the mean distance from the centre of the board of a random sample of 100 darts. Write down an approximation to the distribution of \(\bar { R }\).
  5. A random sample of 100 darts is found to give a mean distance of 13.87 cm . Does this cast any doubt on the modelling?