OCR S3 2016 June — Question 7

Exam BoardOCR
ModuleS3 (Statistics 3)
Year2016
SessionJune
TopicChi-squared distribution

7 A continuous random variable \(X\) has probability density function $$f ( x ) = \begin{cases} a x ^ { 3 } & 0 \leqslant x \leqslant 1
a x ^ { 2 } & 1 < x \leqslant 2
0 & \text { otherwise } \end{cases}$$ where \(a\) is a constant.
  1. Show that \(a = \frac { 12 } { 31 }\).
  2. Find \(\mathrm { E } ( X )\). It is thought that the time taken by a student to complete a task can be well modelled by \(X\). The times taken by 992 randomly chosen students are summarised in the table, together with some of the expected frequencies.
    Time\(0 \leqslant x < 0.5\)\(0.5 \leqslant x < 1\)\(1 \leqslant x < 1.5\)\(1.5 \leqslant x \leqslant 2\)
    Observed frequency892279613
    Expected frequency690
  3. Find the other expected frequencies and test, at the \(5 \%\) level of significance, whether the data can be well modelled by \(X\).