OCR MEI S2 2013 June — Question 2

Exam BoardOCR MEI
ModuleS2 (Statistics 2)
Year2013
SessionJune
TopicApproximating the Binomial to the Poisson distribution
TypeState Poisson approximation with justification

2 Suppose that 3\% of the population of a large city have red hair.
  1. A random sample of 10 people from the city is selected. Find the probability that there is at least one person with red hair in this sample. A random sample of 60 people from the city is selected. The random variable \(X\) represents the number of people in this sample who have red hair.
  2. Explain why the distribution of \(X\) may be approximated by a Poisson distribution. Write down the mean of this Poisson distribution.
  3. Hence find
    (A) \(\mathrm { P } ( X = 2 )\),
    (B) \(\mathrm { P } ( X > 2 )\).
  4. Discuss whether or not it would be appropriate to model \(X\) using a Normal approximating distribution. A random sample of 5000 people from the city is selected.
  5. State the exact distribution of the number of people with red hair in the sample.
  6. Use a suitable Normal approximating distribution to find the probability that there are at least 160 people with red hair in the sample.