5 Two random variables \(S\) and \(T\) have probability density functions given by
$$\begin{aligned}
& f _ { S } ( x ) = \begin{cases} \frac { 3 } { a ^ { 3 } } ( x - a ) ^ { 2 } & 0 \leqslant x \leqslant a
0 & \text { otherwise } \end{cases}
& f _ { T } ( x ) = \begin{cases} c & 0 \leqslant x \leqslant a
0 & \text { otherwise } \end{cases}
\end{aligned}$$
where \(a\) and \(c\) are constants.
- On a single diagram sketch both probability density functions.
- Calculate the mean of \(S\), in terms of \(a\).
- Use your diagram to explain which of \(S\) or \(T\) has the bigger variance. (Answers obtained by calculation will score no marks.)