OCR S2 2009 January — Question 5

Exam BoardOCR
ModuleS2 (Statistics 2)
Year2009
SessionJanuary
TopicContinuous Uniform Random Variables
TypeCompare uniform with other distributions

5 The continuous random variables \(S\) and \(T\) have probability density functions as follows. $$\begin{array} { l l } S : & \mathrm { f } ( x ) = \begin{cases} \frac { 1 } { 4 } & - 2 \leqslant x \leqslant 2
0 & \text { otherwise } \end{cases}
T : & \mathrm { g } ( x ) = \begin{cases} \frac { 5 } { 64 } x ^ { 4 } & - 2 \leqslant x \leqslant 2
0 & \text { otherwise } \end{cases} \end{array}$$
  1. Sketch, on the same axes, the graphs of f and g .
  2. Describe in everyday terms the difference between the distributions of the random variables \(S\) and \(T\). (Answers that comment only on the shapes of the graphs will receive no credit.)
  3. Calculate the variance of \(T\).