5 The continuous random variables \(S\) and \(T\) have probability density functions as follows.
$$\begin{array} { l l }
S : & \mathrm { f } ( x ) = \begin{cases} \frac { 1 } { 4 } & - 2 \leqslant x \leqslant 2
0 & \text { otherwise } \end{cases}
T : & \mathrm { g } ( x ) = \begin{cases} \frac { 5 } { 64 } x ^ { 4 } & - 2 \leqslant x \leqslant 2
0 & \text { otherwise } \end{cases}
\end{array}$$
- Sketch, on the same axes, the graphs of f and g .
- Describe in everyday terms the difference between the distributions of the random variables \(S\) and \(T\). (Answers that comment only on the shapes of the graphs will receive no credit.)
- Calculate the variance of \(T\).