OCR MEI C4 2009 June — Question 6

Exam BoardOCR MEI
ModuleC4 (Core Mathematics 4)
Year2009
SessionJune
TopicReciprocal Trig & Identities

6 Given that \(\operatorname { cosec } ^ { 2 } \theta - \cot \theta = 3\), show that \(\cot ^ { 2 } \theta - \cot \theta - 2 = 0\).
Hence solve the equation \(\operatorname { cosec } ^ { 2 } \theta - \cot \theta = 3\) for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\). Section B (36 marks)