A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Harmonic Form
Q4
CAIE P3 2015 June — Question 4
Exam Board
CAIE
Module
P3 (Pure Mathematics 3)
Year
2015
Session
June
Topic
Harmonic Form
4
Express \(3 \sin \theta + 2 \cos \theta\) in the form \(R \sin ( \theta + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\), stating the exact value of \(R\) and giving the value of \(\alpha\) correct to 2 decimal places.
Hence solve the equation $$3 \sin \theta + 2 \cos \theta = 1$$ for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
5
Q8
Q9
Q10