A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Harmonic Form
Q6
OCR MEI C4 2009 January — Question 6
Exam Board
OCR MEI
Module
C4 (Core Mathematics 4)
Year
2009
Session
January
Topic
Harmonic Form
6
Express \(\cos \theta + \sqrt { 3 } \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R > 0\) and \(\alpha\) is acute, expressing \(\alpha\) in terms of \(\pi\).
Write down the derivative of \(\tan \theta\). Hence show that \(\int _ { 0 } ^ { \frac { 1 } { 3 } \pi } \frac { 1 } { ( \cos \theta + \sqrt { 3 } \sin \theta ) ^ { 2 } } \mathrm {~d} \theta = \frac { \sqrt { 3 } } { 4 }\).
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8