6 Lines \(l _ { 1 }\) and \(l _ { 2 }\) have vector equations
$$\mathbf { r } = \mathbf { j } + \mathbf { k } + t ( 2 \mathbf { i } + a \mathbf { j } + \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 3 \mathbf { i } - \mathbf { k } + s ( 2 \mathbf { i } + 2 \mathbf { j } - 6 \mathbf { k } )$$
respectively, where \(t\) and \(s\) are parameters and \(a\) is a constant.
- Given that \(l _ { 1 }\) and \(l _ { 2 }\) are perpendicular, find the value of \(a\).
- Given instead that \(l _ { 1 }\) and \(l _ { 2 }\) intersect, find
(a) the value of \(a\),
(b) the angle between the lines.