OCR C4 2012 January — Question 8

Exam BoardOCR
ModuleC4 (Core Mathematics 4)
Year2012
SessionJanuary
TopicParametric equations

8 A curve is defined by the parametric equations $$x = \sin ^ { 2 } \theta , \quad y = 4 \sin \theta - \sin ^ { 3 } \theta ,$$ where \(- \frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 4 - 3 \sin ^ { 2 } \theta } { 2 \sin \theta }\).
  2. Find the coordinates of the point on the curve at which the gradient is 2 .
  3. Show that the curve has no stationary points.
  4. Find a cartesian equation of the curve, giving your answer in the form \(y ^ { 2 } = \mathrm { f } ( x )\).