OCR MEI C3 2012 June — Question 6

Exam BoardOCR MEI
ModuleC3 (Core Mathematics 3)
Year2012
SessionJune
TopicReciprocal Trig & Identities

6 Fig. 6 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = 2 \arcsin x , - 1 \leqslant x \leqslant 1\).
Fig. 6 also shows the curve \(y = \mathrm { g } ( x )\), where \(\mathrm { g } ( x )\) is the inverse function of \(\mathrm { f } ( x )\).
P is the point on the curve \(y = \mathrm { f } ( x )\) with \(x\)-coordinate \(\frac { 1 } { 2 }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7b77c646-2bc5-4166-b22e-3c1229abd722-3_711_693_466_685} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Find the \(y\)-coordinate of P , giving your answer in terms of \(\pi\). The point Q is the reflection of P in \(y = x\).
  2. Find \(\mathrm { g } ( x )\) and its derivative \(\mathrm { g } ^ { \prime } ( x )\). Hence determine the exact gradient of the curve \(y = \mathrm { g } ( x )\) at the point Q . Write down the exact gradient of \(y = \mathrm { f } ( x )\) at the point P .