| Exam Board | OCR MEI |
| Module | C3 (Core Mathematics 3) |
| Year | 2012 |
| Session | January |
| Topic | Composite & Inverse Functions |
2 The functions \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) are defined as follows.
$$\begin{array} { l l }
\mathrm { f } ( x ) = \ln x , & x > 0
\mathrm {~g} ( x ) = 1 + x ^ { 2 } , & x \in \mathbb { R }
\end{array}$$
Write down the functions \(\mathrm { fg } ( x )\) and \(\mathrm { gf } ( x )\), and state whether these functions are odd, even or neither.