OCR C3 2013 January — Question 9

Exam BoardOCR
ModuleC3 (Core Mathematics 3)
Year2013
SessionJanuary
TopicReciprocal Trig & Identities

9
  1. Prove that $$\cos ^ { 2 } \left( \theta + 45 ^ { \circ } \right) - \frac { 1 } { 2 } ( \cos 2 \theta - \sin 2 \theta ) \equiv \sin ^ { 2 } \theta .$$
  2. Hence solve the equation $$6 \cos ^ { 2 } \left( \frac { 1 } { 2 } \theta + 45 ^ { \circ } \right) - 3 ( \cos \theta - \sin \theta ) = 2$$ for \(- 90 ^ { \circ } < \theta < 90 ^ { \circ }\).
  3. It is given that there are two values of \(\theta\), where \(- 90 ^ { \circ } < \theta < 90 ^ { \circ }\), satisfying the equation $$6 \cos ^ { 2 } \left( \frac { 1 } { 3 } \theta + 45 ^ { \circ } \right) - 3 \left( \cos \frac { 2 } { 3 } \theta - \sin \frac { 2 } { 3 } \theta \right) = k ,$$ where \(k\) is a constant. Find the set of possible values of \(k\).