It is given that there are two values of \(\theta\), where \(- 90 ^ { \circ } < \theta < 90 ^ { \circ }\), satisfying the equation
$$6 \cos ^ { 2 } \left( \frac { 1 } { 3 } \theta + 45 ^ { \circ } \right) - 3 \left( \cos \frac { 2 } { 3 } \theta - \sin \frac { 2 } { 3 } \theta \right) = k ,$$
where \(k\) is a constant. Find the set of possible values of \(k\).