A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Harmonic Form
Q9
CAIE P3 2013 June — Question 9
Exam Board
CAIE
Module
P3 (Pure Mathematics 3)
Year
2013
Session
June
Topic
Harmonic Form
9
Express \(4 \cos \theta + 3 \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\). Give the value of \(\alpha\) correct to 4 decimal places.
Hence
(a) solve the equation \(4 \cos \theta + 3 \sin \theta = 2\) for \(0 < \theta < 2 \pi\),
(b) find \(\int \frac { 50 } { ( 4 \cos \theta + 3 \sin \theta ) ^ { 2 } } \mathrm {~d} \theta\).
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10